Showing posts with label CIRCUIT. Show all posts
Showing posts with label CIRCUIT. Show all posts

Microcontroller to RS 485 circuit

0 comments
Microcontroller to RS-485 circuit | RS-485 bus can carry up to 256 transceiver modules and over long distances . This is a circuit for connect microcontroller with Rs-485 bus.
Max485
Max485 are low-power transceivers for RS-485 and RS-422 communication. Each part contains one driver and one receiver. Line Length vs. Data Rate The RS-485/RS-422 standard covers line lengths up to 4000 feet. For line lengths greater than 4000 feet, see Typical Applications The MAX481, MAX483, MAX485, MAX487–MAX491, and MAX1487 transceivers are designed for bidirectional data communications on multipoint bus transmission lines.

Microcontroller to RS-485 circuit diagrams
Features
- In μMAX Package: Smallest 8-Pin SO
- Slew-Rate Limited for Error-Free Data Transmission
- 0.1μA Low-Current Shutdown Mode
- Low Quiescent Current
- -7V to +12V Common-Mode Input Voltage Range
- Three-State Outputs
- 30ns Propagation Delays, 5ns Skew
- Full-Duplex and Half-Duplex Versions Available
- Operate from a Single 5V Supply
- Allows up to 128 Transceivers on the Bus
- Current- Limiting and Thermal Shutdown for Driver Overload
Continue reading[...]

Frequency to Voltage Converter Circuit

0 comments
IC LM2917 Frequency to Voltage Converter
IC LM2917 IC chip is designed specifically as a Frequency to Voltage Converter or Frequency to Voltage converter. In its use to applications Frequency to Voltage Converter IC LM2917 requires few external components. 
There are several examples of applications of Frequency to Voltage Converter IC LM2917 datasheet that is included in the LM2917 IC. In this article series Frequency to Voltage Converter IC also taken from the LM2917 datasheet. The advantages of single chip LM2917 Frequency to Voltage Converter is able to provide instantaneous volt output o at time of frequency change 0 Hz. Very easy to apply in measuring the output frequency with the formulation of single-chip Frequency to Voltage Converter VOUT = FIN x VCC x R1 x C1.

Then the single-chip LM2917 Frequency to Voltage Converter This configuration requires only the RC only in frequency doubling. And has an internal zener regulator to aimlessly accuracy and stability in frequency-to-voltage conversion process.

Application circuit Figure IC LM2917 as Frequency to Voltage Converter

Feature-owned single-chip LM2917 Frequency to Voltage Converter
Reference to ground directly with variable reluctance
Op Amp / Comparator with transistor output
50 mA maximum output currents for application directly to the load
Frequency doubling for low ripel
Buid in zener
Linear output ± 0.3%
Application single chip LM2917 Frequency to Voltage Converter
Frequency to Voltage Converter
Rotation speed sensor applications
Speedometer
Tachometer
Cruise Control
Cluth Control
And other applications associated with the measurement of rotation speed or frequency measurements.
Continue reading[...]

Simple Circuit 12V to 120V DC DC Converter

0 comments
Its a simple circuit of 12V DC to 120V DC converter. The circuit consists of two phases first phase of the investor base and then a rectifier and filter stage. IC1 NE555 is wired as an astable multivibrator operating at a frequency of 100 Hz and can be adjusted to the preset R1. IC1 output is coupled to the clock input of IC2 is a dual CMOS D flip-flop. IC2 divides the pulse train of 100 Hz IC1 2 50 Hz pulse trains that are 180 degrees out of the party and offered on the pin 1 and 2 of IC2.

When pin 1 is high transistor Q1 conducts and current flows through the upper half of T1 primary winding. When pin 2 is the transistor Q2 conducts and high current flows through the lower half of the primary coil T1. As a result of a voltage of 120 V AC are induced in the secondary of T1. This voltage is rectified with bridge D1 to provide a 120V DC output. Capacitor C2 is the DC input filter, while C3, C4 are the output filters.

Notes.
  • The circuit can be assembled on a vero board.
  • Q1 and Q2 require heat sink.
  • Output power of this dc dc converter is around 100 watts.
  • IC1 and IC2 are to be mounted on holders.
  • An optional 5A fuse can be added in series to the 12V supply line.
  • T1 can be a 9-0-9V /250V/3A mains transformer.
  • If 3A bridge is not available make one using 1N5408 diodes.
  • Out of the two Flip-Flops inside CD4013 only one is used here.
  • Output of IC1 must be set to 100Hz by adjusting preset R1
Continue reading[...]

12 Volt Charger Circuit with LM350

0 comments
The strength supply routine structure is developed as a resource of continuous present with adverse heat range coefficient. Transistor Q1 (BD 140) is used as a heat range indicator. transistor Q2 is used to avoid the strength supply from discharging through R1 when strength is out of stock. Getting routine is developed depending on the LM350 present regulator IC. The result present of the battery charger can be altered between 13-15 V by various the POT R6.



LM350 will try to keep the present decrease between the feedback pin and result pin at a continuous value of 1.25V. So there will be a continuous present circulation through resistor R1. Q1 act here as a heat range indicator with the help of R6/R3/R4 elements that are more or less manages the platform present of Q1. As relationship emitter / platform of transistor Q1, the same as other semiconductors, containing the heat range coefficient of-2mV / ° C, the present result will also display a bad heat range coefficient. This one is just a aspect of 4 huge, because the difference of the emitter / platform of Q1 is increased by a aspect of category P1/R3/R4. This causes some-8mV / ° C. LED will lighting whenever strength is available.
Continue reading[...]

Basic Principles of the LC resonance circuit

0 comments
If so far you are still confused how the actual origin of the resonance between the capacitor and the inductor is in progress, then the simple circuit above will answer your confusion.


Basic

By understanding a simple electrical circuit above hopefully we will be able to understand the working principle of a series of more complicated and complex that uses the relationship as a series inductor and capacitors transmitter and receiver.

Note the picture above, when the switch SW1 is pressed and released back then obtained by the same signal as in the picture above signal. Initially when SW1 is connected to the voltage supply, the capacitor will make filling fast. Then when SW1 is released charge on the capacitor will be used by the inductor as the supply voltage. In accordance with the general nature of the inductor that the DC signal will be considered ordinary wire inductor such that current flowing quickly through the inductor and the charge on the capacitor decreases rapidly exhausted. Uniquely current that was flowing through the inductor and capacitor will fill the empty capacitor back through the other terminal (negative cycle). Charging kapasior place quickly, then inductor will burden the back so that emptying of cargo going back. That so happens repeatedly (resonance occurs between L and C) until the electrical charge had been used up by these two components in the form of power losses. Equations between regular wire inductor is the inductor with wire work as usual at the time of current flowing to him. Inductors But unlike ordinary wire when current flows to him and vice versa. So it will not happen short circuit if the inductor to get the supply voltage alternating current (AC). But in ordinary wire short circuit will still occur even if the voltage of alternating current.

From the above analysis we can conclude that the LC resonance occurs because one component part affected by the characteristics of other components. For frequencies generated depend on the value of L and C itself. The greater the value of both the frequency will be smaller and smaller the value of both the frequency value will be even greater.
Continue reading[...]

TDA 7309 Digital Audio Processor Circuit

0 comments
Digital Audio Processor TDA 7309 is a stereo audio processor with independent volume control of each channel was to get the audio quality of a good processor. Digital Audio Processor TDA 7309 is equipped with a loudness control is controlled externally. Digital Audio Processor TDA 7309 also has a soft mute feature stand-alone for each canals. Digital Audio Processor TDA 7309 is controlled via the I2C serial bus system with a microcontroller interface.


Block Diagram of Digital Audio Processor TDA 7309Feature-owned Digital Audio Processor TDA 7309The input multiplexer with 3 stereo inputRecording function on the output lineLoudnes external ontrolIndependent volume controlDigital volume control with 1dB stepSoft MuteAll functions of the Digital Audio Processor TDA 7309 is programmed via the I2C serial bus system
Continue reading[...]

USB Battery Charger controller circuit using LM3622

0 comments
From USB Battery Charger controller circuit using LM3622
Continue reading[...]

TDA1308T Headphone amplifier circuit

0 comments
TDA1308T Headphone amplifier circuit 
TDA1308T
TDA1308T Headphone amplifier circuit
Continue reading[...]

Traffic Lights Circuit

0 comments
The circuit of traffic lights in my opinion is a series of easy-hard-easy to make. 



Traffic

Where we are required to be able to condition the flame of three lamps by following the existing traffic regulations. If we use computer programming as a regulator of the third condition of the lights probably we will not spend too much time to make it. As an example with microcontroller programming or programming-based computer applications such as Visual Basic, Delphi and many others. But if you use a common electronic circuit components used may be somewhat time consuming to get the results you are fully in accordance with the conditions of traffic lights that use the streets.

Well ... if youre looking for examples of a series of simple traffic light above the range can I recommend to you. The working principle of a series of traffic light above is very easy to understand. The series of above use the output from IC up / down counter 74 190 as the producer output tercacah and then conditioned using logic gates so that the logic in accordance with the logic of the actual traffic light. Actually you can also use the IC counter ups as pencacahnya. Red lights are represented by the LED D1, D2 and yellow by green led by led D3.

LIST OF COMPONENTS:
Resistors: R1 (1 Kohm), R2, R3 and R4 (220 ohms) and VR1 (Potensio 10 K / 15 K)
Capacitors: C1 (100 UF)
Led: D1 (red), D2 (yellow) and D3 (green).
Integrated Circuit: IC1 (NE 555), IC2 (74LS190) and IC3 (74LS02)

HOW TO WORK AND ANALYSIS OF CIRCUIT LIGHT TRAFFIC:
To generate the signal used peggerak counter circuit astable circuit IC555.
R1, C1 and VR1 is a combination astable as a determinant of the speed of the clock signal to be inserted to the input counter and in the end will determine the length of time the flame of their lamps. The greater the value of the three clock cycles will stay longer and vice versa.
To obtain a combination of LEDs required only 2 bits output from the counter circuit.
Bit-3 from the output to the counter only be used as reset the enumeration.
The lamp was first lit the light yellow color, due to connect with the output Q1 of counter IC. Then followed by a red lamp that is connected to the output Q2. Then both (yellow and red) light simultaneously. The last green light will turn on its own.
The series of bit counter counts up with the sequence:
- 0 1 (light yellow light)
- 1 0 (red light)
- 1 1 (light yellow and red lights)
- 0 0 (light turned green, according to the nature of the gate NOR)
Examples of traffic light sequence apply only to one lane for traffic light circuit that uses more than one line then you can use the same circuit device and use a combination of gates as a liaison between the conditions of each lane. This means you should make a longer red light is illuminated on each other point for point which it operates. These conditions can be achieved by utilizing a combination of logic gates in a chain.
Continue reading[...]

50MW Audio Amplifier circuit

0 comments
50MW Audio Amplifier circuit

The following is a small audio amplifier comparable to what you may come across a small transistor radio medium size. The input stage is biased to ensure that the power is divided equally to provide the two complimentary output transistors which are slightly biased in conduction of the diodes between the bases. A 3.three ohm used in sequence for the use of the issuers of the output transistors to stabilize the bias current that does not change significantly with temperature or several transistors and diodes.

Due to recent increases in bias voltage between the emitter and base decreases as a result of minimizing driving. Input impedance is 500 ohms and the voltage gain is approximately five to eight ohm speaker connected. The voltage swing around the speaker is 2 volts without distorting production and capacity is at the same time in the 50 milliwatt range. A high voltage provided as well as the addition of heat sinks in the output transistors would be a great source of more power. Circuit thirty milliamperes draw a supply of 9 volts.
Continue reading[...]

LED Flasher Circuit Using 555 Timer IC

0 comments
This is a simple LED flasher project that uses a common 555 timer IC for its operation. It is configured as an astable mode which means that its output is a square wave oscillator. Two LEDs are connected to its output in such a way that when one LED is ON, the other LED will turn OFF. 

It uses only 10 simple parts that are easily available at any electronic shops. Capacitor C2 charges exponentially through resistors R1, R2 and the resistance of the trimpot. When C2 has charged to about 2/3 VCC it stops charging and it discharges to about 1/3 VCC through R2 and the trimpot resistance via pin 7. This is the standard operation of a 555 timer. When a Vcc of 5 V to 15 V DC is applied to the circuit, the LED will start to flash.
The frequency of the flashing can be changed by varying the resistance of the potentiometer or trimpot.Parts List The parts list of the simple LED project is as shown below.

Continue reading[...]

FRIDGE DOOR ALARM CIRCUIT

0 comments
This fridge door alarm is using a 3V battery supply should be placed (in a small box) in the fridge near the lamp or close to the opening. With the door closed the photo resistor R2 presents a high resistance (>200K) thus clamping IC1 by holding C1 fully charged across R1 and D1. When a beam of light enters from the opening, or the fridge lamp lights, the photo resistor lowers its resistance (<2k) stopping c1 charging current. therefore ic1, wired as an astable multivibrator, starts oscillating at a very low frequency and after a period of about 24 sec. its output pin (#3) goes high, enabling ic2.

This chip is also wired as an astable multivibrator, driving the Piezo sounder intermittently at about 5 times per second. The alarm is activated for about 17 sec. then stopped for the same time period and the cycle repeats until the fridge door closes.

Important Notes

  • Delay time can be varied changing C1 and/or R3 values.
  • Beeper repetition rate can be varied changing C2 and/or R4 values.
  • Stand-by current drawing: 150µA.
  • Place the circuit near the lamp and take it away when defrosting, to avoid circuit damage due to excessive moisture.
  • Do not put this device in the freezer.


Circuit Diagram



Components List

R1 = 10K 1/4W Resistor
R2 = Photoresistor (any type)
R3 = 2M2 1/4W Resistor
R4 = 1M 1/4W Resistor
C1 = 10µF 25V Electrolytic Capacitor
C2 = 100nF 63V Polyester Capacitor
D1 = 1N4148 75V 150mA Diode
IC1 = 7555 or TS555CN CMos Timer ICs
IC2 = 7555 or TS555CN CMos Timer ICs
BZ1 = Piezo sounder (incorporating 3KHz oscillator)
B1 = 3V Battery (2 x 1.5V AA, AAA or smaller type Cells in series)
Continue reading[...]

GAS LEAK DETECTOR CIRCUIT

0 comments
This is a gas leak detector circuit that detects the leakage of LPG gas and alerts the user through audio-visual indications. The circuit operates off a 9V PP3 battery. Zener diode ZD1 is used to convert 9V into 5V DC to drive the gas sensor module.The gas leakage circuit uses the SEN-1327 gas sensor module from RhydoLABZ. Its output goes high when the gas level reaches or exceeds certain point. A preset in the module is used to set the threshold. Interfacing with the sensor module is done through a 4-pin SIP header.

Pin details of the gas sensor module are shown in Fig. 2. An MQ-6 gas sensor is used in the gas sensor module. The sensor can also be used to detect combustible gases, especially methane.

Circuit Schematic



Whenever there is LPG concentration of 1000 ppm (parts per million) in the area, the OUT pin of the sensor module goes high. This signal drives timer IC 555, which is wired as an astable multivibrator. The multivibrator basically works as a tone generator.

Output pin 3 of IC 555 is connected to LED1 and speaker-driver transistor SL100 through current-limiting resistors R5 and R4, respectively. LED1 glows and the alarm sounds to alert the user of gas leakage. The pitch of the tone can be changed by varying preset VR1. Use a suitable heat-sink for transistor SL100.

SEN1327 gas sensor pin details



Continue reading[...]

12v to 5v dc dc converter circuit diagram

0 comments
Power supply is needed for all of electronic circuits. Say you have a 12V power supply and you want to use it as a 5V power supply. Then use this 12v to 5v dc-dc converter circuit diagram to convert 12 volt to 5 volt. This DC converter circuit provide 5V, 1Amp at output. Here is the small schematic circuit diagram of 12volt to 5volt converter.

Circuit Diagram of 12VDC to 5VDC converter:


12v
Fig: 12 volt to 5 volt dc converter circuit schematic

This DC-DC converter is based on IC LM7805. The LM 7805 is a 3-terminal fixed output positive voltage regulator IC. The output current of this circuit is up to 1Amp . Use a heat sink with LM7805 to protect the IC from overheating.
Continue reading[...]

LA4440 Amplifier Circuit

0 comments
LA4440 is a dual channel audio amplifier IC. It can be used in two modes; one is Stereo amplifier and another Bridge amplifier mode. The LA4440 is a monolithic linear IC from Sanyo. Here I give the both circuit mode of amplifier using IC LA4440.

Features of IC LA4440

  • It has 46dB of ripple rejection
  • Low distortion
  • Good channel separation
  • Thermal protector
  • Overvoltage protector
  • Surge voltage protector

LA4440 Stereo Amplifier Circuit

When the IC LA4440 is Stereo mode in the circuit, its output power is 6w+6w. In stereo mode use two pieces speaker of 2Ωto8Ω.
In the stereo amplifier configuration given below, C11 and C12 are output capacitor. But i ignore them from the circuit of bridge amplifier.

Stereo
Fig-1: LA4440 Stereo Amplifier Circuit Diagram

LA4440 Bridge Amplifier Circuit

When the IC LA4440 is in Bridge mode in the circuit, its output power is 19w. In bridge mode use 4Ω-8Ω speaker. If you want stereo output(19w+19w) in bridge mode then use two copies of amplifier circuit of given below. Resistor R3&R4 is to adjust the voltage gain and for making input signal of inverting amplifier.

Bridge
Fig-2: LA4440 Bridge Amplifier Circuit Diagram

Circuit description for both, stereo and bridge amplifier mode


C10 is filter capacitor used to reduce the ripple of supply voltage. Don’t decrease the value of capacitor C6&C7 less than 100uF, 10v, it may causes of the output at low frequencies goes lower. The pin-6 of LA4440 amplifier circuit  is audio input pin; it used in stereo amplifier mode but in bridge mode it is grounded. C8&C9 are polyester film capacitor used to preventing oscillation, and R1&R2 used for the same reason as filter resistor. Though the maximum supply voltage for both circuit of amplifier is 18V but we recommend to use a 12V,3A power supply. Use a good quality heat sink with LA4440.

I think here you see little comparison between stereo and bridge amplifier of LA4440. If you want to make this amplifier project, then I recommend you the bridge one. I think it is ideal for a beginner. And I love its wattage rather than Stereo mode. There is also a possibilities as I say, make two copies of circuit of bridge amplifier for stereo, it will give you 19w+19w of audio power output.
Continue reading[...]

CD4013 based Staircase switch circuit

0 comments

If you really want to have classical staircase switch with push to switch on from one place and off from another place, here you have more circuits. Now you have two options to build the circuit here, one with light sensitive and another without it. Time delay is not incorporated here. We can use both facilities in a single IC or build them in separate ICs. Any or all of them can be used depending on the need.

Instead of ever present 555, this circuit now employs CD 4013 which has two D type latches in a single package. The circuit toggles a load with a momentary push button. Several push buttons can be fixed in parallel at various places to control the triac from any of those many locations. Two independent circuits can be made from a single IC. There are three options are here to show the flexibility of the idea and as a kind of tutorial for possible applications. Ideas from these circuits can be implemented in other similar circuits with due care.CD4013

A flip-flop is used to store or ‘lock’ one bit of information. This is known as ‘latching.’ Digital electronics and especially computers use a number of flip-flops, which latch several bits of data at the precise moment. There are a few variations of a classical flip flop i.e., JK, and RS. D type flip-flop is also one of them.

D-type flip-flop is just a clocked flip-flop with a single digital input D (D for Data). Every time a D-type flip-flop is clocked, its output follows whatever the state ofD is in. Intermediate state is avoided in this flip-flop. When the clock goes high, data at D (0 or 1) is transferred to Q. q will have the opposite of this state. When clock goes low, data remains unchanged. Q stores data until the clock goes high again when new data may be available.CD4013

CD4013 has two independent D type latches with set, reset, data and clock inputs. Both Q and are available as the outputs, which mean that both output states (high and low) or both toggle states are available. Set or reset is independent of clock.

TRUTH TABLE

CLk D R S Q Q-
low-hi 0 0 0 0 1
Low-hih 1 0 0 1 0
Hi- low X 0 0 Q Q
X X 1 0 0 1
X X 0 1 1 0
X X 1 1 1 1

No change

t = Level change Figure 30

x = Don’t care case

Now we have a series of circuits here using this IC. Circuit 1 and 2 are the same but the second circuit makes use of triacs. Third circuit has the option of light sensitivity incorporated in to it. Use of triac permits operation directly at mains. This IC has two D type latches and the description holds good for both. Hence it is possible to make two independent switches from the same IC.

The circuit is shown in Schematic As soon as the switch SI is pressed, clock input goes high and high data input is transferred to the output which drives a transistor, and hence forth a relay. Now q out put will be low and is coupled to data input now. At the next switch on of SI or S2, clock input goes high and data low. at D input is transferred to Qi transistor. Now Qj cannot any longer hold the relay up, and equipment switches off. Now Q Output is at high level, which is coupled to data input and the latch is ready for next sequence.

In general ICs do not like bad housekeeping, more so when handling mains voltages. Soldering is straightforward. A piece of Vero board is OK. CD4013 is a CMOS IC. Please respect it. Relays should be rated at the current required. Dl and D3 diodes are provided to protect the components from the back EMF generated by the relay coil. This is a standard method of relay circuit protection. Only two switches are shown as examples. You may add more number of switches for use at a number of different locations.

Continue reading[...]

Latest In Circuit Transistor Checker Using 555 timer

0 comments
This simple circuit has helped me out on many occasions. It is able to check transistors, in the circuit, down to 40 ohms across the collector-base or base-emitter junctions. It can also check the output power transistors on amplifier circuits.

Circuit operation is as follows. The 555 timer ( IC1 ) is set up as a 12hz multi vibrator. The output on pin 3 drives the 4027 flip-flop ( IC2). This flip-flop divides the input frequency by two and delivers complementary voltage outputs to pin 15 and 14. The outputs are connected to LED1 and LED2 through the current limiting resistor R3. The LED’s are arranged so that when the polarity across the circuit is one way only one LED will light and when the polarity reverses the other LED will light, therefore when no transistor is connected to the tester the LED’s will alternately flash. The IC2 outputs are also connected to resistors R4 and R5 with the junction of these two resistors connected to the base of the transistor being tested. With a good transistor connected to the tester, the transistor will turn on and produce a short across the LED pair. If a good NPN transistor is connected then LED1 will flash by itself and if a good PNP transistor is connected then LED2 will flash by itself. If the transistor is open both LED’s will flash and if the transistor is shorted then neither LED will flash.
From :: http://home.maine.rr.com/randylinscott/nov97.htm
Continue reading[...]

10 000x With One Transistor Diagram Circuit

0 comments
For a collector follower with emitter resistor, you’ll often find that the gain per stage is no more than 10 to 50 times. The gain increases when the emitter resistor is omitted. Unfortunately, the distortion also increases. With a ubiquitous transistor such as the BC547B, the gain of the transistor is roughly equal to 40 times the collector current (Ic), provided the collector current is less than a few milliamps. This value is in theory equal to the expression q/KT, where q is the charge of the electron, K is Boltzmann’s constant and T is the temperature in Kelvin.

For simplicity, and assuming room temperature, we round this value to 40. For a single stage amplifier circuit with grounded emitter it holds that the gain Uout /Uin (for AC voltage) is in theory equal to SRc. As we observed before, the slope S is about 40Ic. From this follows that the gain is approximately equal to 40I cRc. What does this mean? In the first instance this leads to a very practical rule of thumb: that gain of a grounded emitter circuit amounts to 40·I c·Rc, which is equal to 40 times the voltage across the collector resistor.

If Ub is, for example, equal to 12 V and the collector is set to 5V, then we know, irrespective of the values of the resistors that the gain will be about 40R(12–5) = 280. Notable is the fact that in this way the gain can be very high in theory, by selecting a high power supply voltage. Such a voltage could be obtained from an isolating transformer from the mains. An isolating transformer can be made by connecting the secondaries of two transformers together, which results in a galvanically isolated mains voltage.Circuit diagram:

That means, that with a mains voltage of 240 Veff there will be about 340 V DC after rectification and filtering. If in the amplifier circuit the power supply voltage is now 340 V and the collector voltage is 2 V, then the gain is in theory equal to 40 x (340–2). This is more than 13,500 times! However, there are a few drawbacks in practice. This is related to the output characteristic of the transistor. In practice, it turns out that the transistor does actually have an output resistor between collector and emitter.

This output resistance exists as a transistor parameter and is called ‘hoe’. In normal designs this parameter is of no consequence because it has no noticeable effect if the collector resistor is not large. When powering the amplifier from 340 V and setting the collector current to 1 mA, the collector resistor will have a value of 338 k. Whether the ‘hoe’-parameter has any influence depends in the type of transistor. We also note that with such high gains, the base-collector capacitance in particular will start to play a role.

As a consequence the input frequency may not be too high. For a higher bandwidth we will have to use a transistor with small Cbc, such as a BF494 or perhaps even an SHF transistor such as a BFR91A. We will have to adjust the value of the base resistor to the new hfe. The author has carried out measurements with a BC547B at a power supply voltage of 30 V. A value of 2 V was chosen for the collector voltage. Measurements confirm the rule of thumb. The gain was more than 1,000 times and the effects of ‘hoe’ and the base-collector capacitance were not noticeable because of the now much smaller collector resistor.
Author: Gert Baars
Copyright: Elektor Electronics
Continue reading[...]

PIC 16F88 based 4 digit Up Down counter circuit with explanation

0 comments

This is a 4 digit decimal counter which can operate as a free running counter or in count and hold mode with manual reset. In either mode the counter can be preset to count to a specified value. Clock edge and leading zero suppression can also be configured. The 7-segment display and indicator LEDs are multiplexed. It will drive most common anode 7 segment LEDs. I used four single digit LEDs but a four digit LED module could also be used. In free running mode the overflow output resets on the next clock pulse. Therefore the pulse duration is directly related to the input clock frequency.

Read Source:http://picprojects.org.uk/projects/counter/counter.htm

Continue reading[...]

USB Powered Wireless FM Transmitter Circuit FM Transmitter

0 comments
http://circuit-zone.com/ediy_blog/642/fm-transmitter-with-2n2218-schematic.gifHere’s a Wireless FM transmitter circuit powered from USB ports that could be used to play audio files on a standard VHF FM radio. The transmitter circuit use no coils that have to be wound. This FM transmitter can be used to listen to your own music throughout your home. When this FM transmitter used in the car, there is no need for a separate input to the car stereo to play back the music files from your MP3 player.

This FM transmitter use a chip made by Maxim Integrated Products, the MAX2606 [1]. This IC from the MAX2605-MAX2609 series has been specifically designed for low-noise RF applications with a fixed frequency. The VCO (Voltage Controlled Oscillator) in this IC uses a Colpitts oscillator circuit. The variable-capacitance (varicap) diode and feedback capacitors for the tuning have also been integrated on this chip, so that you only need an external inductor to fix the central oscillator frequency.

It is possible to fine-tune the frequency by varying the voltage to the varicap. Not much is demanded of the inductor, a type with a relatively low Q factor (35 to 40) is sufficient according to Maxim. The supply voltage to the IC should be between 2.7 and 5.5 V, the current consumption is between 2 and 4 mA. With values like these it seemed a good idea to supply the circuit with power from a USB port.

A common-mode choke is connected in series with the USB connections in order to avoid interference between the circuit and the PC supply. There is not much else to the circuit. The stereo signal connected to K1 is combined via R1 and R2 and is then passed via volume control P1 to the Tune input of IC1, where it causes the carrier wave to be frequency modulated. Filter R6/C7 is used to restrict the bandwidth of the audio signal. The setting of the frequency (across the whole VHF FM broadcast band) is done with P2, which is connected to the 5 V supply voltage.

The transmitter PCB designed uses resistors and capacitors with 0805 SMD packaging. The size of the board is only 41.2 x 17.9 mm, which is practically dongle-sized. For the aerial an almost straight copper track has been placed at the edge of the board. In practice we achieved a range of about 6 metres (18 feet) with this. There is also room for a 5-way SIL header on the board. Here we find the inputs to the 3.5 mm jack plug, the input to P1 and the supply voltage. The latter permits the circuit to be powered independently from the mains supply, via for example three AA batteries or a Lithium button cell. Inductor L1 in the prototype is a type made by Murata that has a fairly high Q factor: minimum 60 at 100 MHz.

P1 has the opposite effect to what you would expect (clockwise reduces the volume), because this made the board layout much easier. The deviation and audio bandwidth varies with the setting of P1. The maximum sensitivity of the audio input is fairly large. With P1 set to its maximum level, a stereo input of 10 mVrms is sufficient for the sound on the radio to remain clear. This also depends on the setting of the VCO. With a higher tuning voltage the input signal may be almost twice as large (see VCO tuning curve in the data sheet). Above that level some audible distortion becomes apparent. If the attenuation can’t be easily set by P1, you can increase the values of R1 and R2 without any problems.

Measurements with an RF analyzer showed that the third harmonic had a strong presence in the transmitted spectrum (about 10 dB below the fundamental frequency). This should really have been much lower. With a low-impedance source connected to both inputs the bandwidth varies from 13.1 kHz (P1 at maximum) to 57 kHz (with the wiper of P1 set to 1/10).

In this circuit the pre-emphasis of the input is missing. Radios in Europe have a built-in de-emphasis network of 50 ?s (75 ?s in the US). The sound from the radio will therefore sound noticeably muffled. To correct this, and also to stop a stereo receiver from mistakenly reacting to a 19 kHz component in the audio signal, an enhancement circuit is published elsewhere in this issue (Pre-emphasis for FM Transmitter, also with a PCB). Author: Mathieu Coustans, Elektor Magazine, 2009

MP3 FM Transmitter Parts List
Resistors (all SMD 0805)
R1,R2 = 22k?
R3 = 4k?7
R4,R5 = 1k?
R6 = 270?
P1 = 10k? preset, SMD (TS53YJ103MR10 Vishay Sfernice, Farnell # 1557933)
P2 = 100k? preset, SMD(TS53YJ104MR10 Vishay Sfernice, Farnell # 1557934)
Capacitors (all SMD 0805)
C1,C2,C5 = 4?F7 10V
C3,C8 = 100nF
C4,C7 = 2nF2
C6 = 470nF
Inductors
L1 = 390nF, SMD 1206 (LQH31HNR39K03L Murata, Farnell # 1515418)
L2 = 2200? @ 100MHz, SMD, common-mode choke, 1206 type(DLW31SN222SQ2L Murata, Farnell #1515599)
Semiconductors
IC1 = MAX2606EUT+, SMD SOT23-6 (Maxim Integrated Products)
Miscellaneous
K1 = 3.5mm stereo audio jack SMD (SJ1-3513-SMT
CUI Inc, DIGI-Key # CP1-3513SJCT-ND)
K2 = 5-pin header (only required in combination with 090305-I pre-emphasis circuit)
K3 = USB connector type A, SMD (2410 07 Lumberg, Farnell # 1308875)

Continue reading[...]
Blog host by Blogger.com & | Supported by you